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Abstract
Background Polycystic ovary syndrome (PCOS) is a reproductive hormonal abnormality and a metabolic disorder, 
which is frequently associated with insulin resistance (IR). We aim to investigate the potential therapeutic effects of 
Ubiquitin-protein ligase E3A (UBE3A) on IR in the PCOS rats via Adenosine 5‘-monophosphate (AMP)-activated protein 
kinase (AMPK) activation.

Methods The PCOS and IR rats model was established by dehydroepiandrosterone (DHEA) and high fat diet 
(HFD) treatment, and the fat rate, glucose tolerance and insulin tolerance were measured. The IR rats numbers 
were calculated. Besides, the mRNA levels of glucose transporter 4 (GLUT4) and UBE3A were detected by RT-qPCR. 
Furthermore, the relationship between was demonstrated by co-IP assay. The phosphorylation and ubiquitination of 
AMPK were analyzed by western blot.

Results UBE3A was up-regulated in the PCOS rats. UBE3A knockdown significantly decreased the fat rate, glucose 
tolerance and insulin tolerance in the PCOS and IR rats. Additionally, the GLUT4 levels were significantly increased 
in PCOS + IR rats. Besides, after UBE3A knockdown, the IR rats were decreased, the p-IRS1 and p-AKT levels were 
significantly up-regulated. Furthermore, UBE3A knockdown enhanced phosphorylation of AMPK through decreasing 
the ubiquitination of AMPK. AMPK knockdown reversed the role of UBE3A knockdown in the PCOS + IR rats.

Conclusions UBE3A knockdown inhibited the IR in PCOS rats through targeting AMPK. Our study indicated that 
UBE3A might become a potential biological target for the clinical treatment of PCOS.
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Introduction
Polycystic ovarian syndrome (PCOS) is an endocrine dis-
order syndrome characterized by persistent anovulation, 
hyperandrogenism and insulin resistance [1]. PCOS usu-
ally occurs adolescence and is the main cause of infertil-
ity in women [2]. In recent years, the incidence rate of 
PCOS increases yearly, which is one of the common dis-
eases seriously endangering women’s physical and mental 
health [3]. The pathogenesis of PCOS is complex. Stud-
ies have found that insulin resistance (IR) and compen-
satory hyperinsulinemia play an important role in the 
occurrence and development of PCOS, leading to the 
continuous aggravation of the PCOS patient’s condition 
[4, 5]. On the one hand, high insulin level directly acts 
on ovarian thecal cells through insulin receptor, causing 
excessive functional androgens [6]; On the other hand, 
high insulin level disrupts the normal function of the 
hypothalamus-pituitary-ovary gonadal axis, which ulti-
mately cause infertility [7]. Previous studies found that 
most PCOS patients have different degrees of IR, and the 
androgen level and insulin level are positively correlated 
[8, 9]. Therefore, reducing IR may be a promising thera-
peutic strategy for clinical treatment of PCOS.

Ubiquitin-protein ligase E3A (UBE3A), an important 
member of E3 ubiquitin ligase, is located on human chro-
mosome 15q11-13, also known as human papillomavi-
rus E6-associated protein (E6-AP) [10]. The molecular 
weight of UBE3A is about 100 kDa and UBE3A is com-
posed of 865 amino acid residues [11]. As for the research 
on the role of UBE3A in the occurrence and development 
of human diseases, it is well known that UBE3A deletion 
will lead to the occurrence of Angelman syndrome [12]. 
Then, a large number of studies have shown that UBE3A 
is abnormally expressed in many cancer cells, which fur-
ther affects various malignant biological behaviors of 
tumors, such as cervical cancer [13], liver cancer [14], 
lung cancer [15] and skin cancer [16]. It is found that 
UBE3A modifies ubiquitination of the target protein by 
connecting ubiquitin to a specific site, and then the target 
protein is degraded by the proteasome complex. When 
UBE3A is abnormally expressed, the target protein will 
accumulate abnormally (low levels of UBE3A) or degrade 
excessively (high levels of UBE3A function), which will 
eventually cause the occurrence and development of the 
disease [17–19]. Here, we found that UBE3A was sig-
nificantly up-regulated in the PCOS patients through the 
bioinformatic analysis. However, the role of UBE3A in 
PCOS remains unclear.

Therefore, in this study, we systematically explored the 
effects of UBE3A on IR in PCOS. We hypothesized that 
UBE3A might degrade the Adenosine 5‘-monophosphate 
(AMP)-activated protein kinase (AMPK) to modulate the 
PCOS progression. Thus, UBE3A might act as an induc-
ible protein in PCOS.

Materials and methods
Cell culture
The KGN cells and HEK 293T cells (ATCC, USA) 
were cutured in DMEM/F12 medium in a humidi-
fied incubator at 37° C with 5% CO2. The medium was 
supplemented with 10% FBS and 100 U/mL penicillin-
streptomycin (Invitrogen).

Quantitative real-time PCR (qPCR)
Total RNA was isolated using the TRNzol Univer-
sal reagent (TianGen, Beijing). Reverse transcription 
and qPCR were conducted using a one-step RT-QPCR 
kit (SYBR Green) (KeyGEN). qPCR was performed 
on a Line-Gene Real Time PCR system (Bioer, Hang-
zhou, China). The relative expression was analyzed 
using 2−ΔΔCT method [20]. GAPDH was selected as the 
normalization.

Animals
Forty-two female Sprague Dawley rats (6 weeks old, 
200 ± 20  g) were obtained from the Shanghai Labora-
tory Animal Centre (SLAC, Shanghai, China), and 
were adaptively fed for 3 days on a 12 h light/dark cycle 
with free access to water (22 ± 1 ℃, 50–60% humid-
ity ). The rats were first randomly divided into the fol-
lowing seven groups (n = 6 per group): control, PCOS, 
PCOS-high fat diet (IR), IR + Lentivirus (Len)-sh-nc, 
IR + Len-sh-UBE3A, IR + Len-sh-UBE3A + Len-sh-nc, 
and IR + Len-sh-UBE3A + Len-sh-AMPK. For PCOS 
model establishment, dehydroepiandrosterone (DHEA, 
Sigma) was diluted in 200 µL sesame oil, and the rats 
were injected with DHEA at a dose of 60  mg/kg body 
weight every day for 21 d. For IR induction, the POCS 
rats were fed with high-fat diet (HFD) at same time. 
The rats in the control group received a standard diet. 
The HFD contained the following ingredients: crude 
protein: 12.7%, crude fat 18.9%, crude fiber 3.8%, crude 
ash 4.0%, moisture 9.2%, calcium 0.82%, total phospho-
rus 0.69%, nitrogen-free extract 53.1%, total energy 4.34 
kCal/g, energy supply ratio: protein 11.7%, fat 39.3%, 
carbohydrate 49%. Additionally, for UBE3A and AMPK 
knockdown, the rats were injected with Len-sh-nc, Len-
sh-UBE3A, Len-sh-AMPK (1 × 108 PFU, 10 µL ) one week 
before modeling. Finally, according to the homeostasis 
model assessment of IR (HOMA-IR) method, HOMA-
IR = FINS × FPG/22.5. HOMA-IR > 2.8 indicated the suc-
cessful induction of IR. The fat rate of rat in each group 
was detected using EchoMRI 100 (Echo Medical Systems, 
US).

Sample collection
The weights and HOMA-IR of all rats in the each groups 
were determined after the experiment. Then, all rats were 
were euthanized using 1% pentobarbital sodium (150 mg/
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kg) to collect the blood from the abdominal aorta and 
ovary tissue samples. The samples were stored at − 80 ℃ 
for subsequent experiments.

Glucose tolerance test (GTT)
At 6 and 12 weeks after experiments, the rats were fasted. 
After 12 h of fasting, the weight and fasting blood glucose 
level of rats in each group were measured. According to 
the weight of mice, 20% glucose solution (2  g/kg) was 
injected intraperitoneally. The blood glucose levels of rats 
in each group were measured at 30, 60, 90 and 120 min 
after injection. Finally, the area under curve (AUC) was 
calculated according to the blood glucose change at dif-
ferent measurement time, and the glucose tolerance of 
mice in each group was tested according to a previous 
study [21].

Insulin tolerance test (ITT)
At 6 and 12 weeks after experiments, the rats were fasted. 
After 4 to 6 h of fasting, the weight and fasting blood glu-
cose level of rat in each group were measured. Then the 
0.75 U/kg insulin solution was injected intraperitoneally. 
At 15, 30, 45 and 60  min after the injection of insulin, 
the blood glucose level of mice in each group was mea-
sured. Finally, the area under curve (AUC) was calculated 
according to the blood glucose change at different mea-
surement time, and the insulin sensitivity of mice in each 
group was measured according to a previous study [22].

Western blotting
Total proteins were isolated from tissues or cells using 
RIPA lysis buffer (Beyotime, Shanghai, China). The pro-
tein concentration was measured using a BCA Protein 
Assay Kit (Beyotime). Then, 30 µg protein was seperated 
on 10% SDS-polyacrylamide gel and transferred to PVDF 
membrane (Merck Millipore). After that, the membranes 
were blocked using western blocking buffer (Beyotime). 
The primary antibodies (IRS-1, 1:1200; p-IRS-1, 1:1000; 
AKT, 1:1500; p-AKT, 1:800; AMPK, 1:1200; p-AMPK, 
1:1000; UBE3A, 1:1500; incubated with primary antibod-
ies overnight at 4 °C, followed by incubating with second-
ary antibody at 37 °C for 1 h. The bands were visualized 
using ECL detection kit (KeyGEN). GAPDH was the 
normalization.

For the determination of AMPK protein stability, the 
cells were treated with cycloheximide (CHX) to inhibit 
protein synthesis. The protein levels of AMPK in CHX 
treated cells for 0, 2, 4, 8 h were detected by western blot. 
According to the signal intensity of protein bands, the 
relative expression of each protein was calculated and the 
half-life curve of AMPK protein was drawn.

Co-immunoprecipitation (Co-IP) assay
For Co-IP of endogenous proteins, the cells were washed 
twice with PBS (Sigma, USA), lysed with RIPA buf-
fer (Beyotime). Then 500  µl cell lysates were incubated 
overnight at 4 ℃ with anti-UBE3A or anti-AMPK anti-
body. In order to obtain the immunocomplexes, the cell 
lysates were incubated 30 µl of protein-G agarose beads 
(Beyotime) at 4 ℃ for 4  h. Then after centrifugation, 
the supernatants were discarded to collect the agarose 
slurry. Next, the pellets were washed and resuspended in 
SDS gel-loading buffer. Finally, the bound proteins were 
analyzed by western blot analysis using anti-AMPK or 
anti-UBE3A.

For Co-IP of Exogenous proteins, lysates from HEK 
293T cells treated with Flag-UBE3A or HA-AMPK. Then 
the immunocomplexes and anti-HA antibody or anti-
Flag antibody were used for the Co-IP as above.

Statistical analysis
The data were in this study was shown as mean ± SD. The 
statistical analysis was performed using SPSS 22.0 (SPSS, 
USA) and the figures were generated using PRISM 7.0 
(GraphPad). Data were tested for normality of distribu-
tion and were confirmed to meet normality. Then, the dif-
ference between two groups was analyzed using Student’s 
t-test, and the difference between multiple groups was 
analyzed using one-way analysis of variance (ANOVA). 
Statistical significance was considered to be P < 0.05.

Results
UBE3A was up-regulated in PCOS progression
Through the GSE5090 and GSE5850 data set, we 
obtained 45 co-significantly up-regulated genes in PCOS 
(Fig. 1A). Then, through the KEGG pathway analysis, the 
45 up-regulated genes enriched signaling pathways were 
showed in Fig.  1B. Then we analyzed the mRNA levels 
of genes enriched in the LKB1 signaling in the serum of 
the PCOS rat (Fig.  1C-I). The PCR results showed that 
just UBE3A was significantly increased in the PCOS rat 
(p = 0.05). Therefore, UBE3A was selected for the next 
experiments after being the only molecule found signifi-
cantly overexpressed after PCR.

IR up-regulated the UBE3A levels in PCOS rats
Previous study has found that IR plays an important role 
in the occurrence and development of PCOS, leading to 
the continuous aggravation of the PCOS patient’s condi-
tion. Therefore, we establish the PCOS and IR rat mod-
els through the DHT injection and HFD treatment to 
explore relationship between IR and PCOS [5]. We found 
that the fat rate (Fig. 2A), glucose tolerance (Fig. 2B) and 
insulin tolerance (Fig.  2C) were significantly increased 
in the PCOS rats (p < 0.01), which was further aggra-
vated in the PCOS + IR rats (p < 0.01). Besides, we found 
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Fig. 1 UBE3A was up-regulated in PCOS rats
(A) The up-regulated genes in the PCOS patients obtained from the GSE5090 and GSE5850 data set. (B) The KEGG analysis of the 45 co-differentially up-
regulatede genes. (C-I) The mRNA levels of genes enriched in the LKB1 signaling in the serum of the PCOS rats were detected by RT-qPCR.
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that GLUT4 levels were significantly decreased in PCOS 
rats (p < 0.01), and also aggravated in the PCOS + IR rats 
(p = 0.02, Fig.  2D). Furthermore, we found that there is 
one rat developed IR in the control group, 3 rats devel-
oped IR in the PCOS group, and 5 rats developed IR 
in the PCOS + IR group (Fig.  2E). Besides, the UBE3A 
mRNA levels were significantly increased the PCOS rats 
(p = 0.01), and further increased in the PCOS + IR rats 
(p = 0.03, Fig. 2F). These results indicated that IR signifi-
cantly increased the UBE3A levels, which further pro-
moted the PCOS progression.

UBE3A knockdown relieved the IR progression in the PCOS 
rats
Subsequently, we further explore the role of UBE3A 
knockdown in the PCOS + IR rats. After UBE3A knock-
down, we found that fat rate (p < 0.01, Fig.  3A), glucose 
tolerance (p < 0.01, Fig. 3B) and insulin tolerance (p < 0.01, 
Fig.  3C) were significantly decreased in the PCOS + IR 

rats. Additionally, the GLUT4 levels were significantly 
increased in PCOS + IR rats after UBE3A knockdown 
(p < 0.01, Fig.  3D). Then we found that after UBE3A 
knockdown, the IR rats were decreased (n = 2) com-
pared with the Len-sh-nc group (n = 5) (Fig. 3E). What’s 
more, the p-IRS1 and p-AKT levels in the PCOS + IR rats 
were significantly up-regulated after UBE3A knockdown 
(Fig. 3F-G). These results suggested that UEB3A knock-
down effectively inhibited the IR in PCOS progression.

UBE3A knockdown increased the phosphorylation of 
AMPK through decreasing the ubiquitination of AMPK
LKB1 signaling has been demonstrated to be closely 
related to AMPK [23]. Then we found that after UBE3A 
knockdown, the phosphorylation of AMPK, total AMPK 
protein levels (Fig. 4A) and protein stability (Fig. 4B) were 
significantly increased in the KGN cells. Then we further 
analyzed the relationship between AMPK and UBE3A. 
Through the co-IP assay, we verified the interaction 

Fig. 2 IR up-regulated the UBE3A levels in PCOS rats
The fat rate (A), glucose tolerance (B) and insulin tolerance (C) in the PCOS and PCOS + IR rats. (D) The GLUT4 mRNA levels were in the PCOS and PCOS + IR 
rats were detected by RT-qPCR. (E) The number of IR rats in each group were calculated. (F) The UBE3A mRNA levels were in the PCOS and PCOS + IR rats 
were detected by RT-qPCR.
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between UBE3A and AMPK at both the exogenous 
(Fig. 4C, in the KGN cells) and endogenous (Fig. 4D, in 
the HEK 293T cells) protein levels. Furthermore, we 
found that UBE3A knockdown decreased the ubiquitina-
tion of AMPK and increased total AMPK protein levels 
(Fig. 4E). These results indicated that UBE3A knockdown 
might activate the LKB1 signaling pathway through 
decreasing the ubiquitination of AMPK.

AMPK knockdown reversed the role of UBE3A knockdown 
in the PCOS rats
Finally, we found that after AMPK knockdown, that 
fat rate (p < 0.01, Fig.  5A), glucose tolerance (p < 0.01, 
Fig. 5B) and insulin tolerance (p < 0.01, Fig. 5C) were sig-
nificantly increased in the UBE3A knockdown PCOS + IR 
rats. Additionally, the GLUT4 levels were significantly 
decreased in UBE3A knockdown PCOS + IR rats after 
AMPK knockdown (p < 0.01, Fig.  5D). Then we found 

Fig. 3 UBE3A knockdown relieved the IR progression in the PCOS rats
After UBE3A knockdown, the fat rate (A), glucose tolerance (B) and insulin tolerance (C) in the PCOS + IR rats. (D) The GLUT4 mRNA levels were in the 
PCOS + IR rats were detected by RT-qPCR. (E) The number of IR rats in each group were calculated. (F & G) The p-IRS1 and p-AKT protein levels were in 
the PCOS + IR rats were detected by western blot
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that after AMPK knockdown, the IR rats were increased 
(n = 4) compared with the Len-sh-UBE3A + Len-sh-
nc group (n = 2) (Fig.  5E). What’s more, the p-IRS1 and 
p-AKT levels in the UBE3A knockdown PCOS + IR rats 
were significantly down-regulated after AMPK knock-
down (Fig.  5F-G). These results indicated that UBE3A 
knockdown inhibited the PCOS progression through 
increasing the AMPK levels.

Discussion
In this study, we found that UBE3A regulated the IR 
development in the PCOS rats through targeting AMPK 
expression levels. Mechanistically, UBE3A knockout 
enhanced phosphorylation of AMPK through decreas-
ing the ubiquitination of AMPK. AMPK knockdown 
reversed the role of UBE3A knockdown in the PCOS + IR 
rats.

Fig. 4 UBE3A knockdown increased the phosphorylation of AMPK through decreasing the ubiquitination of AMPK in the KGN cells
(A) The protein levels of p-AMPK and AMPK were detected by western blot after UBE3A knockdown. (B) The protein stability of AMPK detected by western 
blot after UBE3A knockdown. (C) Exogenous interaction between AMPK and UBE3A was determined using co-IP with anti-Flag or anti-HA antibodies 
co-transfected with Flag-UBE3A and HA-AMPK. (D) Endogenous interaction between AMPK and UBE3A was determined using co-IP with anti-AMPK or 
anti-UBE3A antibodies. (E) The ubiquitination of AMPK after UBE3A knockdown was detected by western blot
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PCOS is one of the important risk factors of ovulatory 
dysfunction infertility in women, the pathogenesis of 
which is relatively complex. At present, many research-
ers believe that high androgen is the key cause of PCOS, 
and high level of androgen can stimulate the decompo-
sition of visceral fat and promote the islet of pancreas 
β Cells release insulin and induce IR in the body [7, 24, 
25]. IR promotes the rapid internalization of activated 

insulin receptor into cytosol, which blocked the insulin 
signaling and aggravated the disease development [26, 
27]. Previous studies also found that the expression of 
glucose transporter 4 (GLUT4) and post-insulin recep-
tor signal transduction molecules in the endometrium of 
PCOS patients with IR were decreased [28–30]. Uche et 
al. [31] found that PCOS women demonstrated increased 
IR in adipose tissue, which is closely associated with 

Fig. 5 AMPK knockdown reversed the role of UBE3A knockdown in the PCOS rats
After UBE3A and AMPK knockdown, the fat rate (A), glucose tolerance (B) and insulin tolerance (C) in the PCOS + IR rats. (D) The GLUT4 mRNA levels were 
in the PCOS + IR rats were detected by RT-qPCR. (E) The number of IR rats in each group were calculated. (F & G) The p-IRS1 and p-AKT protein levels were 
in the PCOS + IR rats were detected by western blot
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whole-body IR. Liu et al. [32] demonstrated that modi-
fied Cangfu Daotan decoction may play a role in improv-
ing ovarian function in PCOS-IR rats by downregulating 
upregulating the gene expression of IRS-1/GLUT4 in the 
insulin signaling pathway in the inflammatory environ-
ment. Similarly, here, we found that GLUT4 were signifi-
cantly decreased in the PCOS rats (p < 0.01), and IR was 
also happened. After HFD treatment, the GLUT4 levels 
were further decreased (p = 0.02) and IR was aggravated. 
Therefore, we speculated that paying attention to IR may 
be the key to the treatment of PCOS.

UBE3A, a ubiquitin modified gene, has been dem-
onstrated to accelerate the target gene degradation 
through enhancing the ubiquitination in many diseases. 
For example, Wang et al. [17] found that PTPA, an acti-
vator of protein phosphatase 2 A, was a bona fide ubiq-
uitin ligase substrate of UBE3A. Low levels of UBE3A 
decreased the ubiquitination of PTPA, which further 
accelerated PP2A holoenzyme assembly, and enhanced 
its activity in angelman syndrome. Additionally, in esoph-
ageal cancer, Zheng et al. [33] demonstrated that UBE3A 
was increased and promoted the malignant behavior of 
esophageal cancer cells through degrading ZNF185. 
However, the effects of UBE3A on IR of PCOS remains 
unclear. In this study, through the bioinformatic analy-
sis, we found that UBE3A was significantly up-regulated 
in PCOS, which was further confirmed in PCOS patients 
(p = 0.05) and rats (p = 0.01). Additionally, UEB3A silenc-
ing relieved the IR in PCOS rats. These results prelimi-
narily revealed the role of UEB3A in PCOS. Interestingly, 
through the KEGG pathway analysis, UEB3A was dem-
onstrated to be enriched in LKB1 signaling. LKB1, as the 
upstream kinase of AMPK, can directly phosphorylate 
AMPK to participate in glycolipid metabolism and regu-
late the occurrence and development of IR [23]. Recent 
researches have demonstrated that AMPK participated 
in the PCOS progression. Heidy et al. [34] suggested that 
myo-inositol inhibited the IR in PCOS through increas-
ing the AMPK levels. Selenay et al. [35] demonstrated 
that metformin and resveratrol treatment played the 
antioxidant and antiinflammatory roles in PCOS patients 
through enhancing the AMPK levels. Combined with our 
bioinformatic analysis, we speculated whether UEB3A 
participated in the occurrence and development of IR 
in PCOS by regulating the expression of AMPK. Here, 
we found that UEB3A knockdown decreased the ubiq-
uitination levels of AMPK, while the phosphorylation 
of AMPK was enhanced. This implied that the degrada-
tion role of UEB3A in AMPK is achieved by inhibiting 
its phosphorylation. Importantly, through the exogenous 
and endogenous Co-IP assay, the interaction between 
UEB3A and AMPK was confirmed. The rescue experi-
ments demonstrated that AMPK silencing reversed the 
effects of UEB3A on the IR in the PCOS rats.

In conclusion, our study indicated that UBE3A expres-
sion is elevated in PCOS progression. UBE3A expression 
is closely related to IR. UBE3A knockdown inhibited the 
IR in PCOS rats through enhancing the AMPK levels by 
ubiquitination. Our study indicated that UBE3A might 
become a potential biological target for the clinical treat-
ment of PCOS in future.
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